Geomimicry

De Sosteniblepedia
Revisión a fecha de 22:00 18 ago 2020; Aprocupet (Discusión | contribuciones)

(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)
Saltar a: navegación, buscar

Geomimicry: la otra cara de la moneda

Part 1

Mimicking Nature, But Not as Nature Intended: An Introduction to Geomimicry

November 5, 2018

by Gregory Unruh

Anyone immersed in the world of sustainability has heard of biomimicry — the design and manufacture of products inspired by nature. It's a powerful philosophy being used by businesses to tackle some of the sustainability challenges of products and production processes. But behind the idea of biomimicry lies a riddle — an implicit recognition that our current approach to production does not mimic nature. And that leaves a question: What is our current approach to manufacturing? If we are not doing biomimicry, what exactly are we doing? The answer is Geomimicry.

Every time we chisel a brick, forge an iron beam or distill a hydrocarbon for fuel, we're engaging in acts of geomimicry, which can be defined as the imitation of physical geological processes in the design and manufacture products and services — it's been the basis of human industry since our prehistoric ancestors first picked up a rock to use as a tool. The modern industrial world and our success as a species is thanks to geomimicry. And that's part of the challenge: Because geomimicry is so ancient, so embedded, we don't really notice it. Humans were using geomimcry before we were using fire or writing. But recognizing geomimicry is crucial to addressing the sustainability challenges of modern industry.

To understand geomimicry, we have to understand the Earth’s physical systems and how they operate. The geosphere is in a constant cycle of construction and destruction. It's continuously fabricating new rocks deep in the Earth’s crust and then pushing them up to the surface of the planet where they are worn back down again. It's a cycle we don't perceive, because it over eons.

So, what exactly are we geomimicking? At the most basic level, we are mimicking the Earth’s physical weathering processes. Mountains seem like permanent features of the landscape, but physical forces are constantly wearing them down. Wind, rain and ice are really just instruments of gravity, continuously breaking up and washing away the landscape; if you give them long enough, they can carve a Grand Canyon.

Shaping our industrial world

Humans mimic this physical weathering process through a variety of subtractive manufacturing methods. Some of the first human artifacts know to archeologists are Clovis points — arrowheads carved by indigenous peoples of North America 13,000 years ago. The ancient art of flint knapping is one of the earliest forms of geomimicry. Over time, our techniques tools evolved, but even today, anytime we're shaping an object by carving, whittling, washing or grinding away material, we're mimicking the geologic processes of physical weathering.

But it’s not just subtractive manufacturing. Nature also engages in additive manufacturing. Take a stratovolcano such as Japan’s Mount Fuji. The beautiful symmetric cone is formed by volcanic processes adding layer upon layer of lava and ash, building up to mountainous heights. Humans have also mimicked these additive processes. Sun-dried bricks — made by adding compounding layers of clay into a mold and then leaving out in the sun to harden and dry — are some of our oldest building materials; early forms of pottery also relied on the additive shaping of clay to create jars and containers.

While this type of additive manufacturing was an advance, it took a giant leap forward when humans discovered they could mimic the heat and pressure found deeper in the Earth's crust to create much higher-quality materials. By firing clay and subjecting it to intense heat, clay minerals are transformed into a glassy ceramic, a technically superior material. Over time, our geomimetic methods were refined, and we developed kilns and that allowed us to intensify and control the heat and pressure with greater precision. But no matter how sophisticated our technology, in the end we were still merely imitating the geologic processes that create, form and metamorphose rocks and minerals.

Geomimcry is also the basis of metallurgy and our metal use. Humans were pounding raw copper into useful shapes as far back as 10,000 years ago, but modern metal-making is pure mimicry. Melting metal is no easy feat; it requires creating plutonic conditions up here on the surface temperatures with temperatures exceeding 1500° centigrade.

Even our world of plastics, gasoline and pharmaceuticals are built on geomimicry: Industrial chemical processes are replicating and controlling forces that only occur naturally at great geologic depth. Most of the work of a chemical plant is fractionation — or fractional distillation — the use of intense heat and pressure to break hydrocarbons up into components including gases, diesel or kerosene. Other industrial processes are then used to recombine those components to produce plastics and pharmaceuticals. But again, no matter how modern or sophisticated, a petrochemical plant is merely aping the geologic forces at work deep in the crust that are responsible for natural oil and gas deposits.

Even nuclear power — the radiogenic heat arising from the decay of radioactive elements that heats the earth's interior — is geomimicry. We take this nuclear heat that drives plate tectonics and creates volcanoes and hot springs and concentrate it up here on the surface to create nuclear energy for our own purposes.

So, as you can see, geomimicry is pervasive; the success of our modern industrial world is largely thanks to geomimetic processes and we are fortunate for the material comforts it has provided. But as you can probably guess from the last few examples, there is a major downside to geomimicry, lying in many of the pressing environmental sustainability problems we face.

The other shoe

At the very basic level, there is the straightforward environmental degradation that comes from geomimicry’s dependence on the extraction of natural resources, be it mining for minerals or logging for lumber. Resource extraction produces large-scale surface disruptions, so extensive that they can often be seen from space. But extracting resources is just the first step — industry then transforms the materials through geomimetic processes that rely geologic temperatures and pressures generated through the use geologically derived fossil fuels (petroleum is Latin for “rock oil”), which are also responsible for substantial amounts of environmental degradation in their own right.

The intense conditions of industrial forges don't occur naturally on the planet’s surface, except perhaps at volcanoes and hot springs, so life in the biosphere is not adapted to them. When things get out of control, catastrophic deadly consequences ensue — such as an oil refinery explosion or nuclear meltdown. But it is the slow-motion consequences that are perhaps most disastrous.

Geomimicry depends on the extraction and dispersion of substances from the Earth's crust that were once sequestered away below the surface, many of which are hazardous to humans and life. Add to this geomimicry’s ability to formulate synthetic substances through petrochemistry and you begin loading the biosphere with elements that life that was never adapted to deal with. The biosphere has no way to process these wastes, so they accumulate in the environment, wreaking havoc on natural systems. In the United States, there are over 1,300 active Superfund sites, which are no-man’s lands contaminated with the detritus of geomimicry. We have been we've been working to clean these up old industrial sites for more than four decades and yet, after billions of dollars, only 375 have been cleaned up and closed.

As bad as Superfund sites are, at least the pollution is concentrated in a single location. Bigger problems ensue as these chemicals disperse over time and dissipate into the environment. A study by the Environmental Working Group showed where they are going: Scientists tested the umbilical cord blood of newborn babies and found it contaminated by over 200 industrial chemicals. The chemicals come from pesticides, consumer products and the wastes arising from the burning of fossil fuel. When they get into the bloodstream of a living creature, the body protects itself by secreting the toxins away in body fats, a process that leads to the bioaccumulation of pollutants in living things. And not just humans: Everywhere scientists look, from Arctic polar bears to Antarctic penguins, they find industrial chemicals. The full implications of this great geomimetic experiment are still unclear. Our mimicking of the planet's nuclear processes also has its consequences. Of course, there are horrific consequences from the explosive release of one the most destructive forces on the planet, but another slow-motion problem arises from the accumulation of depleted nuclear fuels. In the seven decades since the first nuclear power plant went online, we've made almost no progress in figuring out what to do with the generated waste. In nature, nuclear isotopes are found on the surface in low concentrations, something that makes natural radiation relatively harmless to life. But we failed to heed these lessons. Our solution is to concentrate this very long-lived material, then dig holes and bury it back in the ground. By doing so, we are implicitly turning the waste back over to the geosphere to deal with it.

What we'll discover in the next article is that this is not as crazy as it sounds. The Earth already has a fully functioning circular economy, one that we implicitly rely on at our folly.

Part 2

The Earth's Circular Economy: Not a Practical Solution to Our Waste Issues

November 13, 2018

by Gregory Unruh

Geomimicry, which is the human imitation of physical geological processes in the design and manufacture products and services, produces huge volumes of goods. Its production processes work as a linear throughput economy, where products go from the cradle to the grave. Often characterized as a take-make-waste system, it is also incredibly efficient at turning natural resources into trash. It's estimated that 94 percent of raw materials coming into industrial systems become waste before the product is even finished! You might think this sounds strange until you realize a high-quality copper deposit is only a few percent copper, which means you're throwing away 90-plus percent of the extracted copper ore as waste rock. Even in the high-tech pharmaceutical industry, it can take 100 tons of raw materials to produce one ton of salable pills, which is a 99 percent waste rate.

Of the 5 percent of materials that actually get turned into product, 80 percent of it becomes waste within a matter of weeks. Think about the lifespan of a disposable pen, razor or yogurt cup. In the end, only a little more than 1 percent of inputs become durable goods such as refrigerators, TVs or houses. We often call what we're doing “mass production,” but from this perspective, it’s actually doing mass destruction.

To address the limitations of our linear economy, it is argued that we need to rethink our current systems and create a circular economy. Well, I’ve got a surprise for you: We already have a circular economy. It’s been operating for millions of years, and all of our geomimetic wastes will ultimately be recycled in a closed-loop process. Unfortunately, it's not going to happen on timescales that are of much use to us: The existing circular economy functions on geologic timescales, which are measured in millions of years.

It is the Earth’s geosphere that is running a continental-scale recycling machine. The machine, driven by plate tectonics, is a process of crustal creation and destruction that is described by the Rock Cycle — a basic geology concept that describes the transformation of rock through time, transformations that are the basis of human geomimicry. On the surface of the Earth, you have physical erosion and weathering, which is a subtractive manufacturing process that sculpts the landscape. As the erosion flows into the oceans, you have sedimentation and accretion, which is an additive manufacturing process that's building up layers that will eventually become future rocks. When the sediments are buried, they become subjected to intense heat and pressure, which melts and transforms them, just like our geomimetic processes of metallurgy, ceramics and petrochemistry. And driving the circular process is the nuclear energy reactions occurring deep in the core of the planet.

Since we have not yet implemented our own circular economy, we are in effect still relying on the planet’s existing circular processes to deal with the massive amounts of waste we are creating. Every time we bury waste in a landfill, what we're doing in practice is turning it over to a geospheric recycling process. If we waited long enough, plate tectonics would drag it to a subduction zone where it would be melted, transformed and geologically recycled. Of course, that's not going to solve our problems — we can't wait millions of years to recycle our waste. But in effect, that's what we're doing.

Recognizing the futility of relying on geologic recycling by the planet’s circular economy should be a wakeup call to the folly of our dependence on geomimicry

Part 3

Geomimicry: Reversing the Great Sequestration

November 20, 2018

by Gregory Unruh

This series has looked at Geomimicry — the human imitation of physical geological processes in the design and manufacture products and services — and this article will look another sustainability challenge that arises from our dependence on geomimicry: Global climate change.

From space, what you notice are the blue-green colors — green being plant life and blue, liquid water. This is not an accident, as biology has played a powerful co-evolutionary role in creating life-sustaining conditions on the planet. By looking at the chemistry of the atmosphere, we can see the power of the biosphere to alter the air around us.

If you look at the seasonal variation inset, you'll notice that concentrations come down dramatically between April and September corresponding, to spring and summer in the northern hemisphere. In the spring, the northern forests come alive and green leaf growth is everywhere. Leaves are fascinating things: First of all, they’re little solar panels that are produced on demand. As soon as the sun is strong enough, trees produce their panels and start turning sunshine into chemical energy and biomass. Second, they appear out of thin air. Literally.

Actually, air is not as thin as it seems to us, but full of CO2. In the springtime, the trees start sucking carbon dioxide out of the atmosphere as a raw material input for the manufacture of leaves and plant growth, and that's what you see in these annual cycles. In the fall, the trees jettison the leaves and as they decay, CO2 returns to the atmosphere. Once the biosphere in the northern hemisphere gets active, it changes the atmosphere. Life has a consequential impact on what happens in the atmosphere.

When you combine geology with biology, you have an even greater long-term impact on the atmosphere. The first 600 million years of the earth are appropriately called the Hadean period and point to a very hot environment.

Volcanoes released huge amounts of carbon dioxide in the early days of the earth. But as geologic activity started to slow, rainwater formed and rock weather began to remove CO2 from the atmosphere, fostering conditions that were tolerable for life. This graph shows estimates of CO2 in the earth's atmosphere for the last 500 million years.

Now, however, with the rise of our geomimetic industrial economy, we are in the process of reversing the Great Sequestration. Through coal mining, we are exhuming the ancient Carboniferous forests and burning them for energy. By doing so, we put their long-sequestered carbon back into the atmosphere. We're reversing the dynamic interplay between biology and geology that took hundreds of millions of years to play out, and doing so in the blink of a geologic eye.

Will our reliance on geomimicry return us to an environment that is less conducive to life? We don't know the full consequences of reversing the Great Sequestration, but it is certainly making a world less conducive to the lifestyles we’ve grown accustomed to. We are already beginning to see impacts of climate change with the increases in hurricanes, flooding and droughts, all of which are in agreement with predicted impacts of increasing atmospheric CO2. Geologic history tells us that reversing the Great Sequestration is incredibly risky and something that should be a preeminent concern to humankind.

Part 4

Could Doubling Down on Geomimicry Save Us from Climate Disaster?

November 27, 2018

by Gregory Unruh

The last article showed how our reliance on Geomimicry is reversing hundreds of millions of years of geological and biological activity, and dramatically increasing the amount of carbon dioxide in the atmosphere. The question now is, “What are we going to do about it?”

Keeping new carbon out of the atmosphere in the first place is always the most efficient and cheapest way to keep climate change from progressing. One way to achieve this is to turn away from geomimicry in favor of doing things the way nature does. We would take a biomimetic approach to industry instead of a geomimetic one. I explore this route in my book, The Biosphere Rules, which lays out a set of manufacturing principles derived from nature that can eliminate the unfortunate consequences of geomimicry.

However, implementing solutions such as the Biosphere Rules today can only deal with future emissions, and we’ve already put a large amount of CO2 into the atmosphere. What do we do about that carbon? One possibility is to double down on geomimicry: We can tackle the climate problem by emulating geologic systems through the practice known as geoengineering, which is the deliberate intervention in planetary systems to try to mitigate climate change. Basically, we'd be hacking into the Earth’s processes and mimicking planetary-scale geologic phenomena to alter climatic conditions.

A simple example is simulating the impact of a volcanic eruption on the climate. An eruption spews ash and sulphur dioxide high up into the stratosphere, where they can block out the sun’s rays; it actually acts like a parasol to produce global cooling. The 1991 eruption of Mount Pinatubo in the Philippines threw ash and gas 35 kilometers into sky and left aerosols aloft for three years, resulting in measurable reductions in global temperatures.

Some scientists have suggested that humans could purposefully put aerosols into the atmosphere to create our own controlled global cooling. And the truth is, we're already doing something like this. When planes fly through the atmosphere they often leave condensation trails, or “contrails,” which are basically thin clouds fostered by jet engine exhaust. These clouds can reflect back some of the incoming sunlight and have an impact on the climate. So, we could do this strategically and mimic the impact of a volcanic eruption through the injection of sulfate aerosol into the atmosphere. Of course, this does nothing about the CO2 in the atmosphere, so the injection of aerosols would have to be sustained possibly for centuries.

Luckily, geomimicry can also be used to get CO2 out of the atmosphere. As we saw in the last article, carbon is cycled around the planet by both biology and geology, with the geologic cycle sequestering away carbon in mineral form through the process of chemical weathering. In the atmosphere, carbon dioxide reacts with water to create carbonic acid, which then rains down on rocky surfaces. Certain silicate rocks such as volcanic basalt are rich in calcium and magnesium, elements that react with rainwater to form carbonate minerals. Once these alkaline minerals are created, they are relatively stable and turn into long-term carbon sinks. Human geomimics can emulate nature by crushing up silicate rocks and distributing them to foster an enhanced weathering process that removes atmospheric CO2. Of course, the challenge is the cost of crushing and distributing huge volumes of rock, but the approach is technically feasible.

An alternative would be to industrially create conditions that directly capture CO2 from the air. While not yet commercialized, a number of technologists, academics and scientists working on large industrial technologies that pass air across membranes that chemically scrub CO2 from the atmosphere — the captured CO2 can be converted to a gas that can be pumped into old oil reservoirs or other geologic formations to sequester it away. Alternatively, the carbon could be transformed into stable carbonate minerals.

So, there are geomimetic approaches to deal with climate change, but we have to be careful; we're interfering with planetary systems that have been operating long before humans began messing around. Up to this point, we've been engaging in a geomimetic transformation of the atmosphere unconsciously or unwittingly. But with geoengineering, we're talking about creating systems to dial in the amount of CO2 to whatever level human beings want it to be.

We’re engaging on a different level of human influence over the natural world. In effect, we're taking the wheel of spaceship Earth and consciously and intentionally becoming the species that is deciding the fate of the planet. What is the right level of CO2 in the atmosphere? That's a huge question and not one you’re likely to get planetary consensus on. Russia, for example, could benefit from warmer temperatures in places such as Siberia — as might Northern Europe and Canada, at least in the short term. “At what levels should we set the planetary atmosphere?” is a question that humans have never confronted. And quite honestly, we are ill-equipped to deal with it.

But whether we do so consciously or not, our reliance on geomimicry has already made us consequential actors in deciding our planet’s future. As Marshall Mcluhan pointed out, “There are no passengers on spaceship earth. We are all crew.”

Dr. Gregory C. Unruh is the Arison Professor of Values Leadership at George Mason University in the Washington DC Metro area, and the Sustainability Editor for the MIT Sloan Management Review.

His book, The Biosphere Rules: Nature’s Five Circularity Secrets for Sustainable Profits, can be found at https://www.globalleadershipacademy.com/. He is author of the Harvard Business Press books Being Global: How to Think, Act and Lead in a Transformed World and Earth, Inc.: Using Nature's Rules to Build Sustainable Profits, as well as numerous articles published in Harvard Business Review, Forbes and the Huffington Post.